Random roundup

random roundup banner

“Random” roundup because any posts linking to articles or ideas I’ve recently found noteworthy will never occur on a regular basis (as others manage to do – I applaud you) but only when enough interesting material has accrued and I have a spare moment. The links will, however, not be random. For example, you can expect many links to point to articles on adult neurogenesis or hippocampal function but will likely find few links directing you to photos of puppy dogs.

Dopaminergic Modulation of Cortical Inputs during Maturation of Adult-Born Dentate Granule Cells. A pretty thorough examination of dopaminergic modulation of synaptic transmission and synaptic plasticity in the dentate gyrus. Dopamine reduced synaptic transmission in both immature and mature granule neurons, but through different receptor subtypes. Additionally, dopamine reduced long-term plasticity in immature neurons but not mature neurons. Given the suggestion that dopamine could gate the entry of information into long-term memory, these findings suggest young and old neurons could have quite different behavioral functions.

Mu Y, Zhao C, & Gage FH (2011). Dopaminergic Modulation of Cortical Inputs during Maturation of Adult-Born Dentate Granule Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31 (11), 4113-23 PMID: 21411652

————————-

Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Memory consolidation is the phenomenon by which memories are encoded through enduring structural changes in the brain and is often demonstrated by showing that memory loss occurs when you inhibit protein synthesis around the time of learning. This paper shows that one of the most commonly-used protein synthesis inhibitors, anisomycin, leads to increased norepinephrine release in the amygdala which could, by itself, impair memory.  The interesting final experiment showed that the effects of anisomycin on memory and norepiniphrine were reduced when the amygdala was totally shut down with lidocaine.

Sadowski RN, Canal CE, & Gold PE (2011). Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Neurobiology of learning and memory PMID: 21453778

————————-

Evidence for the Re-Enactment of a Recently Learned Behavior during Sleepwalking. I’ve written a number of times about how neuronal firing patterns observed during waking experience are replayed during sleep, and could therefore reflect consolidation of memory and even dream content. Of course no one knows what rats are experiencing during sleep or whether they dream like us. To get around this problem, these authors trained sleepwalkers on a motor task with very defined arm movements and then examined sleepwalking behavior on the following night. Indeed, a video shows one subject who wakes up the following night and, for a few seconds, seems to be performing the same stereotyped task movements. Only one subject but tantalizing evidence and a cool experimental strategy nonetheless.

Oudiette D, Constantinescu I, Leclair-Visonneau L, Vidailhet M, Schwartz S, & Arnulf I (2011). Evidence for the Re-Enactment of a Recently Learned Behavior during Sleepwalking. PloS one, 6 (3) PMID: 21445313

————————-

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. One of the biggest questions in the neurogenesis field is whether adult-born neurons are important for behavior. Usually this is tested by examining behavior in animals that lack adult neurogenesis but many studies have correlated increased neurogenesis in enriched or athletic animals with “improved” behavior (smarter, less depressed etc). Of course, the major confound is that enrichment and exercise do many other things besides increasing neurogenesis. To get around this Sahay et al. made a mouse in which neurogenesis could be specifically increased in adulthood. These mice were better at discriminating between related contexts and, after exercise, showed much greater exploratory activity in an open field.

Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, & Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature PMID: 21460835

————————-

Necessity of Hippocampal Neurogenesis for the Therapeutic Action of Antidepressants in Adult Nonhuman Primates. This study potentially bridges a big big gap by extending the role of adult neurogenesis in the antidepressant response from rodents all the way to monkeys. Chronic stress induced anhedonic and subordinate behaviors and these effects could be reversed with fluoxetine, but not in irradiated monkeys that had reduced neurogenesis. Could someone follow this up with a transgenic model?

Perera, T., Dwork, A., Keegan, K., Thirumangalakudi, L., Lipira, C., Joyce, N., Lange, C., Higley, J., Rosoklija, G., Hen, R., Sackeim, H., & Coplan, J. (2011). Necessity of Hippocampal Neurogenesis for the Therapeutic Action of Antidepressants in Adult Nonhuman Primates PLoS ONE, 6 (4) DOI: 10.1371/journal.pone.0017600

————————-

Systemic 5-bromo-2-deoxyuridine induces conditioned flavor aversion and c-Fos in the visceral neuraxis. OH NOOO! Rats don’t like BrdU! These authors show that pairing a BrdU injection with exposure to a sweet palatable drink causes rats to avoid that drink in the future. It also leads to a mildly elevated stress response and elevated c-fos expression in areas of the brain that represent viscera, consistent with the possibility that BrdU could be exerting unpleasant effects in the gut, where there is a lot of cell division. The authors conclude that the effects on behavior in subsequent days and weeks are probably minimal (phew!), but I’d certainly keep these data in mind when considering injecting BrdU around the time of behavioral testing.

Kimbrough A, Kwon B, Eckel LA, & Houpt TA (2011). Systemic 5-bromo-2-deoxyuridine induces conditioned flavor aversion and c-Fos in the visceral neuraxis. Learning & memory (Cold Spring Harbor, N.Y.), 18 (5), 292-5 PMID: 21498563

————————-

Compensatory network changes in the dentate gyrus restore long-term potentiation following ablation of neurogenesis in young-adult mice. In an interesting study of plasticity following neurogenesis reduction, these authors find that LTP was dramatically reduced after arresting neurogenesis, but only transiently. LTP recovered within weeks, possibly because of compensatory reductions in inhibition and enhanced survival of neurons born before neurogenesis ablation. Hat tip to Sil for this one.

Singer BH, Gamelli AE, Fuller CL, Temme SJ, Parent JM, & Murphy GG (2011). Compensatory network changes in the dentate gyrus restore long-term potentiation following ablation of neurogenesis in young-adult mice. Proceedings of the National Academy of Sciences of the United States of America, 108 (13), 5437-42 PMID: 21402918

————————-

That’s it.

4 Comments:

  1. Thanks for the new post and the concise summaries; I lack an ability to byass the paywalls. I had been missing your updates. There really isn’t a comparable (public) source for filtering news on neurogenesis. Much appreciated!

  2. thank you for posting this. Have you read the article titled “Depressed New Neurons”? I needed to find more articles for my website that focuses a lot on neurogenesis. feel free to take a look!

    https://sites.google.com/site/morganmizell93/

  3. What’s your view on the sleep walking paper?
    Legit?

Leave a Reply